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Abstract— A nonhomogeneous interlayer is introduced between two dissimilar materials to charac-
terize the transition of the elastic moduli across the bimaterial interface. The 1 /\/ r singularity field
near the tip of an advancing interlayer crack is related to the remote interface crack tip field for
general aligned orthotropic bimaterials. An approximate but explicit relation for the phase shift
between the near tip and the remote singularity fields is derived. Comparisons with analytical and
numerical solutions show that the relation is fairly accurate. The interlayer model provides insightful
interpretations of several important concepts of interface fracture mechanics, such as stress oscil-
lation, near tip contact and mode mixity. For crack tip mode mixity, %', in the range
—m/2 < ¥*P < m/2, the crack tip is truly open. The crack is partially closed for ' = + /2. Plasticity
effects associated with dislocation emissions from the crack tip are also considered.

1. INTRODUCTION

An account of a pragmatic engineering methodology which allows the fracture resistance
of interfaces to be measured and utilized is documented in an Acta-Scripta Metallurgica
Proceedings (1990) and a comprehensive article by Hutchinson and Suo (1992). The rapid
progress that was made in the late 1980s on this subject can be attributed to two concepts:
(i) small scale contact zone and (ii) mode mixity. The concept of a small scale contact zone
circumvents the pathological aspects of the oscillatory singularity and permits the argument
to be made that the complex stress intensity factor is the appropriate crack tip characterizing
parameter (Rice, 1988).

Mode mixity is an important feature of interface fracture (Rice, 1988 ; Shih and Asaro,
1988 ; Hutchinson, 1990). Because of the oscillatory singularity the relative proportion of
(in-plane) shear to normal tractions on the bonding plane, i.e. the mode mixity, varies with
distance ahead of the crack tip. Mode mixity can be unambiguously defined by the ratio of
the shear to normal tractions at a distance L ahead of the crack (Rice, 1988). Though the
choice of L is arbitrary, a fixed value of L for the material pair provides a common measure
of mode mixity and allows the interface toughness data from different crack geometries to
be organized into a single curve of toughness vs mode mixity. The interface fracture
toughness curve, a property of the material pair, is a key element of a pragmatic engineering
methodology. These aspects are elaborated upon by Hutchinson and Suo (1992), Shih
(1991) and O’Dowd et al. (1992).

There are advantages to assigning a microstructural identity to L, namely an interlayer
zone thickness. The interlayer zone, which can be the reaction layer or the interdiffusion
zone, need not be precisely established since a thickness dimension broadly representative
of the interface structure is all that is required. However once a choice is made for the
material pair, it must be used consistently. Several attractive features emerge with this
approach leading to clarification of certain concepts. For example the crack tip field is
nonoscillatory so that the local mode mixity does not vary with distance ahead of the crack
tip. The local stress modes are defined by the conventional K, and K|, stress intensity factors.
These are related to the remote complex stress intensity factor by a relation which depends
on the interlayer thickness and the elastic properties of the interlayer and the material pair.
Stress oscillation may not be an issue at all and related problems of an “open crack™ and
small scale contact can be dealt with directly.
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The interlayer mentioned above is a transition layer where the elastic moduli vary
continuously between those of the two materials as discussed by Delale and Erdogan (1988).
The thickness of this transition layer, hereafter denoted by 24, ranges from nanometers for
an atomistically sharp interface (e.g. Ruhle ez al., 1990; O’'Dowd et al., 1992) to fractions
of a millimeter for a fully diffused bimaterial interface. The interlayer thickness and elastic
modulus can be estimated by one of several methods: the unloading portion of the inden-
tation curve produced by a nanoindentor (Nix, 1989), line scans on various material phases
by electron optical methods (Whan, 1986) and high resolution scanning acoustic microscope
(Ahn et al., 1991). Investigators are also exploring various processing techniques to tailor
the composition gradient and microstructure variation with the aim of producing a gradual
variation of mechanical properties between two distinctly dissimilar substrates.

These developments provide the impetus for considering an interlayer model with
moduli varying across the finite width as depicted in Fig. 1. The semi-infinite crack lies on
the x, axis and advances in a straight or zigzag manner within the interlayer. The elasticity
tensor varies smoothly and monotonically from the upper material moduli C},; at x, = &
to the lower material moduli Cj;;, at x, = —hAvia an arbitrarily prescribed material transition
function (defined in Section 3). However the elasticity tensor does not vary in the x,
direction. The model introduces another length to the present framework of interface
fracture while its mathematical tractability brings about a greater clarity of interlayer
fracture than is possible with the model used by Delale and Erdogan (1988). The concept
of interlayer fracture is pertinent to either a diffuse interface or a wavy (or zigzag) interface,
as illustrated in Figs 2(a, b), respectively.

The general structure of the crack tip solution within the interlayer is constructed and
then connected to the remote K field for an aligned orthotropic bimaterial by appealing
to the J integral. Only one real material related parameter, namely the phase shift angle w,
is left unspecified. The values of w are estimated in Section 3 by the auxiliary functions w,,
and w_ which are related to the phase shift angle ¢ (Hutchinson et al. 1987) for a crack
paralleling an interface between dissimilar materials, attributed to the material mismatch.
The auxiliary functions are used to construct a multi-ply bimaterial model to estimate w
values for monotonic material transition functions. The accuracy of the procedure is
confirmed by comparing the estimated phase shift with the analytical solutions of Delale
and Erdogan (1988) and recent finite element calculations.

Related issues of stress oscillation and crack tip contact are dealt with directly. The
crack tip is truly open (free of any form of contact) for —n/2 < " < n/2. For partially
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Fig. 1. A mechanics model for interlayer fracture.
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Fig. 2. Various types of interlayers, (a) a transition layer between bimaterials, (b) a wavy (or rough)
interface.

closed cracks, ' = +m/2, we introduce the concept of small scale interlayer contact. The
interlayer fracture model effectively removes the singularity of normal contact stress near
the crack tip, as would be predicted by the Comninou model (Comninou, 1977). The
fracture behavior of a partially closed interface crack appears to be controlled by the
competition between near-tip shearing and remote tensile cracking. The conditions for
emission of dislocations from the crack tip and the effect of near tip mode mixity on
dislocation emission angles are discussed.

2. GENERAL STRUCTURE OF CRACK TIP SOLUTION

Attention is now focused on the mechanics analysis of the interlayer fracture model
depicted in Fig. 1, where the materials above and beneath the interlayer, as well as the
nonhomogeneous material within it are restricted to be orthotropic with principal axes
aligned with the interfaces (the crack front is normal to the principal plane). The physical
length of the interface crack, designated by L, is assumed to be several orders of magnitude
larger than the interlayer width 24. Along the crack extension line, the bimaterial interface
field dominates at a distance x, >» h (equivalently the interlayer can be thought of as shrunk
to a mathematically sharp interface). The generalized traction ¢ along x, axis in the region
far ahead of the crack tip has the form:

Hx)) = 03,+%0y =———=xF x> h 0}
27x,

The above relation defines a remote complex stress intensity factor K= for anisotropic
bimaterials consistent with the definition proposed by Hutchinson et al. (1987), and by
Rice (1988) for the special case of isotropic bimaterials. n® in (1) represents the traction
resolution factor for anisotropic materials and provides a unified representation of mode
mixity (Wang et al., 1992; Yang et al., 1991). The superscript co and the superscript tip
(to be employed shortly) designate quantities associated with the remote and near tip fields,
respectively. Since x7 = exp (islnx,) =cos(eln x,)+isin (¢1n x,), the traction com-
ponents rotate as x, varies. Be that as it may, the stress oscillation near the crack tip may
never take place because relation (1) only applies at x, > A.

For aligned orthotropic bimaterials, the traction resolution factor # is given by :

n=< H,\[H,,, (2)

where the H’s are the elements of the bimaterial Hermitian matrix. Explicit expression for
H for aligned orthotropic bimaterials is well-documented in the literatures, e.g. Suo (1990),
Wang et al. (1992). For the in-plane problems, these coefficients are:
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HY = 201 s 1150] " + 20214 /511522
H3 = 20274 /51,82:]" +[2nA7 V4 /5118231
= i/s11822+512) " —il\/S11522+512] 7. 3

Here [ ]* designate quantities for the upper material, and [ ]~ for the lower material.
The conventional notation of six by six compliance matrix {s;;} is adopted, and the elements
are related to the Young’s moduli, shear modulus and Poisson’s ratios, e.g., s,, = 1/E,,
822 = 1/E,, 5¢¢ = 1/G;and 5,5 = —v5/E, = —v,,/E,. A and n in (3) are defined by :

Si /1 2515+ 566
A=— = [+ —5.
$32° " 2 + 4(511522)”2 @

They measure the in-plane orthotropy: 4 =n=1 for isotropic solids and A =1 for
solids with cubic symmetry. Ellipticity implies that both A and n should be positive. The
definitions (3) and (4) pertain to plane stress, but are also valid for plane strain if s; is
replaced by si; = 5;;—5:35,3/533.

The generalized Dundurs’ parameters « and f are given by:

_ Ws1s22]7 —[/s11822]" g = iHT, )
[\/Snszz]*-i—[\/snszz]# (HY H3)'1

the latter is related to the oscillation index ¢ in (1) by:

&

1 1-8

e=£1n—l+—ﬁ.

©

The energy release rate ¥, as determined by the J integral evaluated along a remote
contour, is given by :

_ Hy
4 cosh?® e

oo}

|K>|2. Y

Now direct attention to distances |x,| « 4. The near tip field is governed by the classical
1/ \/; singularity field referred to the material property in the proximity of crack tip provided
that continuum analysis still furnishes a valid approximation to the near tip field. The
generalized traction along the crack extension line has the following form:

. Klip
Hx\) = 0,,+"P6,y, = X, < h. ®)
27Tx1

Observe that both X* and K'? do not reduce to the classical definition of complex
stress intensity factor K;+iK;; when ¢ = 0, unless the traction resolution factor n defined in
(2) equals unity. We can conclude from (8) that stress oscillation does not occur as long
as the first contact distance r., predicted by the field based on the mathematically sharp
interface, is comparable to some fraction of the interlayer thickness A. If r, is estimated
using the remote field (1) (Rice, 1988), the nonpathological condition can be phrased as:

oy > XD~ (124§, ©

where the dimensionless number c,; is a fraction of unity, say about one half, and ¢* is
the mode mixity of (remote) load defined by:
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n Zzn’ (10)
o

22

Y® = arctan

which does not depend on any length parameters. The energy release rate, ', as evaluated
by J integral along a contour shrunk onto the crack tip, is given by:

9% = HBIK1, HE = 4" Ssnsn]® an

where n and 2 are evaluated using (4) with s; appropriate to the (crack tip) local material
compliances.

The material in Fig. 1 is homogeneous along x, direction. This allows us to make use
of the path independent J integral to get

IK*P| = g|K™|, (12)

where the possibility of a contact zone near the crack tip is neglected for the moment.
Relative to remote applied K™, the near tip stress intensity is scaled by a positive and real
transmission factor ¢ given by :

VHR/HS
" coshme a3
which involves the material properties pertaining to the near tip (homogeneous) region and
the remote bimaterial. The ¢ here follows the notation used by Hutchinson er al. (1987)
for crack paralleling an isotropic bimaterial interface.

By dimensional analysis, the near tip complex stress intensity factors should scale as
a linear combination of K*#* and its complex conjugate weighted individually by some
dimensionless complex numbers. Restricting the result in (12) to the range of admissible
mode mixities we obtain:

Klip =gq eiw Koohiz, (14)

by mathematical arguments similar to those employed by Hutchinson er al. (1987),
and Suo and Hutchinson (1989) for isotropic bimaterials. The real-valued quantity w
depends only on the elastic moduli and therefore represents the material related phase
shift from the remote field to the near tip field. It is the only parameter not determined by
an application of the J integral. We should point out that the adoption of the traction
resolution factor », as incorporated in the definitions of stress intensity factors in (1) and
(8), enables us to derive the general structure connecting K to K*? as shown in (14) for
aligned orthotropic materials. For the special case of isotropic bimaterials, we have :

VE®/E®

coshne ’

" =n®=1 g= (15)

where E* and E' are the plane strain tensile moduli for bimaterial and near-tip material,
respectively and :

2 1-vi 1=yt E ®

o - - ip _
== E, TE E 1—v2] - (16)

Though not explicitly noted by Delale and Erdogan (1988), their crack tip stress intensity

factor data also shows that the phase shift is independent of the remote loading mode when

the crack size is much larger than the interlayer width.

SAS 31:7-G



990 W. Yang and C. Fong SHiH
3. ESTIMATE OF PHASE SHIFT

The near tip field within the interlayer, apart from a shift angle w, is constructed in
the preceding section. A method to estimate the phase shift is now detailed. Estimate of @
can be facilitated by using the auxiliary functions w_ and w_ representing phase shift angles
for the special cases depicted in Figs 3(a, b). The same geometries are also viewed from the
x, direction in Fig. 4(a) and outlined by the dashed lines marked by w ., and w _, respectively.
We observe, for the particular case of isotropic bimaterials, that the auxiliary functions
are identical to the angles ¢(a, f) tabulated in the paper by Hutchinson ez al. (1987) for
crack paralleling an interface between dissimilar materials. These values, calculated by an
integral equation technique, are accurate to within “a small fraction of a percent™.

The other auxiliary function w, for the phase shift angle can be obtained by simply
switching the upper and lower material assignment, and a change of the sense of the
coordinate directions. Taking note of the formulae in (5) and (3), we arrive at:

o, (@p) = —w_(-x —p). (17)

For realistic values of o and §, an inspection of the data listed in Table 1 of Hutchinson et
al. (1987) indicates that the value of w_(«, §) is small and is nearly equal to —w_(—a, —f).
Hutchinson et al. (1987) have proposed, for sufficiently small « and f, an approximate
formula for w_ which is the first equality given below:

w_ ~0.1584a+0.06308 ~ o, . (18)

The linear dependence of w_ on « and § shown by first equality in (18) and the mirror
symmetry behavior of w, and w_ as indicated in (17) implies the second relation in (18).
An estimate of  for a general interlayer model can be obtained by using the multi-ply
model as shown in Fig. 4(a). A bimaterial cross-section of unit thickness containing the
interlayer is assumed to be represented by many bimaterial thin plies. The division line of
material Cy, and material Cjj, is denoted by the solid stair-step curve which approaches
the smooth dot-dashed line when the ply thickness is taken to be infinitesimal. Accordingly,
the thickness averaged elastic moduli at the location x, = yh is given by the mixture rule:

Ciei(¥) = 1 =z Ciias+2(») Ciias (19)

where z(»), as referred to the coordinate system set up in Fig. 4(a), characterizes the dot-
dashed bounding curve in Fig. 4(a). Both z and y are dimensionless, and the sequence of
thin plies can be shuffied around as long as their thickness composition obeys the same z(y)
function, termed as the material transition function in the sense of (19). This transition

AR W

Fig. 3. Bounds of phase shifting angle, (a) limiting case w_, (b) limiting case w,..
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representative thin ply

Fig. 4. Estimate of phase shifting angle, (a) multi-ply model, (b) a family of material transition
function.

function in general can be any monotonically decreasing function satisfying the following
boundary conditions of z(1) = 0 and z(—1) = 1.

We now apply formula (14) to each individual ply in the above multi-ply assembly.
The remote compatibility of those thin plies are maintained by the common K® field,
whereas the slight difference in the near tip fields between neighboring plies is neglected
after averaging along the thickness. The linearity of (K'"*)? with respect to the near tip
modulus E' suggests the following approximation ;

t

(K®)? x —(K)? f 4(y)? €% (yh)?" () dy. (20)

Here K™ is taken outside the integration because the remote bimaterial field is shared
by all thin plies. The average (K')? on the left hand side of (20) could be phrased in terms
of the right hand side of (14) squared. After dividing both sides in (20) by the common
factor (K™)? and taking the phase angles of the remaining expressions, we arrive at the
following estimate for the phase shift angle:
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1+a 2iw ° 2ig,,’ 2iw : 2ig
20 ~arg| — —e¥+ | y¥r(y)dy—e?o- L7 Z(ydy ), (21

| —1

where previously established relations (5), (15) and (16), as well as the step like property
of w(y) and q(y) have been utilized in the above derivation. Equation (21) provides a
general estimate for @ under any form of material transition functions, including the
exponential function employed in the analysis of Delale and Erdogan (1988). It can be
further simplified to:

& sin 2w, +sin 2a)_> ( v ) 1+a
2 ~ _ 2ig —__ " a—m
w =X arctan <¢‘ 008 209, 4008 200 +arg , y¥ezZ(y»dy), ¢ —a e, (22)

when z’(y) is an even function of y. The first term in (22) represents an estimate for the
phase shift angle for a transition layer having constant elastic moduli given by the mean of
the neighboring bimaterial, while the second term characterizes the slope of material
variation across the interlayer and has sign opposite to that for . The second term in (22)
can be evaluated for specific form of the material transition function z(y).

A typical family of z(y) is:

z = (1—sgn|y|™)/2, 23

whose shapes for different values of the exponent m are plotted in Fig. 4(b). Substitution
of (23) into (22) yields the following expression of w:

& sin 2w, +sin 2w
¢ cos 2w, +cos 2w

2
2w = arctan ( )— arctan i’ 24)

The second term vanishes for large m because the material property in the transition
layer becomes constant like. When m is small the second term becomes very large so that
the interlayer model does not apply; in this case a redefinition of the interlayer thickness
so as to give a finite m is appropriate. If the material property varies linearly across the
inhomogeneous interface, m = 1 and the estimated values of @ for the range of « and f
considered are listed in every first row of Table 1. The values of w obtained by using the
assumption in (18), namely:

2
o ~ 0.1584a +0.06308 — } arctan 5 25)

are listed in the second rows of Table 1. It can be seen that the approximation (25) agrees
well with (24) for realistic range of « and B, and especially near the major diagonal of Table
1 where most bimaterial Dundur’s parameters are clustered (Suga et al., 1988).

It is helpful to distinguish the two different sources contributing to the phase shift: a
contribution associated with the oscillation index ¢, termed oscillation phase shift, and an
intrinsic phase shift that does not depend on the stress oscillation. The latter shifts the near
tip phase even in the absence of stress oscillation, i.e. the case of a real Hermitian matrix.
Anticipating this classification, we split © as:

o, f) =ws+elnd, oy=ow(x0) (26)

where the first and the second terms are intrinsic and oscillation phase shifts, respectively.
The values of @ are presented in Table 2. The physical significance of & will become transparent
in the next section. The approximation anticipated in (25) leads to the following estimates
of intrinsic and oscillation phase shifts:



Table 1. Phase shifting angles w for isotropic bimaterials with a linear transition layer (every first and second row represents accurate and approximate values, respectively)

4

B -0.8 —0.6 —-04 —0.2 -0.1 0 0.1 0.2 0.4 0.6 0.8

—-04 —0.2558 —0.2219 —0.1954 —0.1725 —0.1612 —0.1492 —0.1360 —0.1207 —0.0790 —0.0088 0.1287
-0.2836 —0.2520 —0.2203 —0.1886 —0.1728 —0.1569 —0.1411 —0.1252 —0.0936 —0.0619 —0.030

—0.2 —0.2412 —0.1787 —0.1378 —0.1055 —0.0907 —0.0758 —0.0603 —0.0433 —0.0010 0.0627 0.1763
—-0.2035 -0.1718 —0.1401 —0.1085 —0.0926 —0.0768 —0.0609 —0.0451 —0.0134 0.0183 0.0499

—0.1 —0.2290 —0.1530 —0.1055 —0.0696 —0.0537 —0.0381 —0.0220 —0.0049 0.0360 0.0949 0.1965
—0.1649 —0.1332 -0.1016 —0.0699 —0.0540 —0.0382 —0.0224 —0.0065 0.0252 0.0568 0.0885
—0.05 —0.2219 —0.1392 —0.0887 —0.0536 —0.0349 —0.0190 —0.0030 0.0140 0.0539 0.1101 0.2056
—0.1458 —0.1141 —0.0824 —0.0508 —0.0349 —0.0191 —0.0032 0.0126 0.0443 0.0760 0.1076

—-0.02 —-0.2172 —0.1307 —-0.0784 —0.0402 —0.0236 —0.0076 0.0085 0.0253 0.0645 0.1191 0.2108
—0.1343 —0.1207 —0.0710 —0.0393 —0.0235 —0.0076 0.0082 0.0241 0.0557 0.0874 0.1191

0 —0.2141 —0.1249 —0.0715 —0.0327 —0.0161 0.0 0.0161 0.0327 0.0715 0.1249 0.2141
~0.1267 —0.0950 —0.0634 —0.0317 —0.0158 0.0 0.0158 0.0317 0.0634 0.0950 0.1267
0.02 —0.2108 —0.1191 —0.0645 —0.0253 —0.0085 0.0076 0.0236 0.0402 0.0784 0.1307 0.2172
—0.1191 —0.0874 —0.0557 —0.0241 —0.0082 0.0076 0.0235 0.0393 0.0710 0.1027 0.1343
0.05 —0.2056 —0.1101 —0.0539 —0.0140 0.0030 0.0190 0.0349 0.0536 0.0887 0.1392 0.2219
—0.1076 —0.0760 —0.0443 —0.0126 0.0032 0.0191 0.0349 0.0508 0.0824 0.1141 0.1458
0.1 —0.1965 —0.0949 —0.0360 0.0049 0.0220 0.0381 0.0537 0.0696 0.1055 0.1530 0.2290
—0.0885 —0.0568 —0.0252 0.0065 0.0224 0.0382 0.0540 0.0699 0.1016 0.1332 0.1649
0.2 —0.1763 —0.0627 0.0010 0.0433 0.0603 0.0758 0.0907 0.1055 0.1378 0.1787 0.2412
—0.0499 —0.0183 0.0134 0.0451 0.0609 0.0768 0.0926 0.1085 0.1401 0.1718 0.2035
0.4 —0.1287 0.0088 0.0790 0.1207 0.1360 0.1492 0.1612 0.1725 0.1954 0.2219 0.2558
0.0302 0.0619 0.0936 0.1252 0.1411 0.1569 0.1728 0.1886 0.2203 0.2520 0.2836

Jake[Is1u1 ue Suofe arnydRI]

£66
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Table 2. Values of &

o

B -038 -06 -04 -02 -01 00 0.1 0.2 0.4 0.6 0.8

—04 0.1501 0.1928 0.2349 0.2783 0.3026 0.3307 0.3647 0.4087 0.5567 0.9369 2.5962
—0.2 0.0238 0.0627 0.1183 0.1949 0.2453 0.3087 0.3930 0.5115 0.9852 2.6437 15.369
—0.1 0.0008 0.0083 0.0368 0.1130 0.1863 0.3037 0.5017 0.8568 3.0851 19.497 470.0

—0.05 9x 1077 0.00016 0.0038 0.0345 0.1119 0.3031 0.8306 24124 29.473 1x10° 4x10°
0.05 0.5870 0.3951 0.3311 0.3093 0.3029 0.3031 0.3069 0.2693 0.3403 0.4093 0.6142
0.1 0.5763 0.3900 0.3288 0.3076 0.3033 0.3037 0.3082 0.3148 0.3452 0.4157 0.6276
02 05568 0.3814 0.3253 0.3080 0.3063 0.3087 0.3147 0.3237 0.3582 0.4344 0.6571
0.4 0.5307 0.3709 0.3276 0.3206 0.3237 0.3307 0.3409 0.3547 0.3991 0.4871 0.7343

wo ~ 0.15840, @& ~ 0.3. @7

The last number is representative of the magnitude of @ in Table 2, where the & values
ranging from 0.2 to 0.4 are marked by bold face typesets.

4. NEAR TIP CRACK MODE

The near tip crack mode is defined here as the phase angle y'? of K'®, where the latter
is related to the near tip generalized traction. The expression of y'? immediately follows
from (14) and (12):

Y = arg (K*h*) + . (28)

The physical significance of « as a phase shifting angle is now evident. The structure
of (28) pertains to aligned orthotropic bimaterials. Nevertheless as a first order approxi-
mation, the w in (28) can be identified with the w listed in Table 1, treated as functions of
generalized Dundur parameters « and § defined in (5).

Insights on the near tip crack mode can be gained by considering detailed structure of
the complex bimaterial stress intensity factor K. To date, only one class of boundary value
problems has been analyzed for generally anisotropic materials, namely a collinear array
of cracks on the interface between two semi-infinite substrates. The stress intensity factors
are found to be identical to their counterparts for isotropic bimaterials. For the example
of the Griffith crack with crack length L, K* is:

K* = 1*(1+2ig)L~"/nL)2, (29)

where 1* = 65, +in* 6%, stands for applied remote traction to the Griffith crack and whose
phase angle is denoted by ¥ in (10) (Suo, 1990). The value of ¥* would only depend on
loading mode mixity for the special case of isotropic bimaterials.

Substituting (29) into (28), we obtain the following result on near tip crack mode of
the Griffith crack:

] L
Y = y® t+arctan 2e—¢ In 7 +w, (30)

where the last three terms contribute to what shall be referred to as the skewness of the

interlayer problem. Substitution of the approximate relations (26) and (27) leads to the
following explicit result:

. L
e =://°°+0.1584a—£lnm. (31)

At this juncture, it is appropriate to ask about the accuracy of the proposed multi-layer
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Table 3. y* predictions compared with the Delale-Erdogan solution (1988)

aflh Present solution Delale-Erdogan (¢~ = 0) Delale-Erdogan (y* = n/2)
1.0 4.446 5.124 5.076

2.0 6.264 6.989 7.020

40 8.082 8.269 8.304

8.0 9.901 8.998 8.990
10.0 10.486 9.178 9.182

model. The results of two independent evaluations are discussed below. First, the predictions
of the multilayer model is compared with the analytical solution of Delale and Erdogan
(1988) for a Griffith crack with crack length L = 2a. The bimaterial outside the interlayer
of half-thickness 4 is characterized by elastic constants E,./E_ = 3and v, = v_ = 0.3, while
the Young’s modulus varies across the interlayer by :

E(x;) = /3E_ P, B, =1In /3. (32)

The near tip mode mixity is then given by (30) with w calculated from (21). The latter
can be written down more explicitly as:

1

1 . L . )
2w ~x arg {———1 -_i_z eior j lyz“ efor dy +e**- J; ye ebor dy}. 33)

Listed in Table 3 are the y'?—y*™ data (in degrees) calculated from (30) and (33)
(under the assumption of h « L) and the analytical results of Delale and Erdogan (1988)
for the two distinct cases of Y™ equals zero and =/2. It can be seen that the multi-layer
estimate on the near tip mode mixity differs from the analytical solution by about 1°. For
the interlayer geometry of a/h = 10, the q factor for the remote tension case takes the value
of 1.060, quite close to the value of 1.064 determined by J-integral [see (13)], whereas the
g factor for the remote shear case is 1.040, slightly less than the J-integral prediction.

We have also compared predictions by the multi-layer model with full-field numerical
calculations for the boundary layer crack geometry, i.e. the geometry bounded by the outer
circle depicted in Fig. 1. Tractions consistent with bimaterial K* field are prescribed along
the outer circular boundary of radius R. The bimaterial elastic constants are taken as
E, /E_=0.2andv, = v_ = 0.3. In the finite element model, the material properties across
the interlayer vary according to the material transition function of (23), with m taken as
2. The g factor for this material prescription is then determined as 1.317. The crack
configuration is discretized by a mesh consisting of 1488 quadrilateral elements which are
focused at the crack tip. Further details of numerical calculation will be reported elsewhere
(Guo et al.,, 1992). The calculated fracture parameters for various relative interlayer
thicknesses /R are listed in Table 4. The results of |K'5|, the calculated magnitude of near
tip stress intensity factor, and Y5 —y®, the calculated near tip mode mixity shift, are the

Table 4. Boundary layer calculations on near tip fracture

parameters

h/R | K&/ K| 123 Y

0.01 0.985 18.759 19.380
0.02 0974 21.096 21.817
0.03 0.966 22.573 23.243
0.04 0.956 23.511 24.255
0.05 0.951 24.198 25.040
0.06 0.945 24.746 25.681
0.08 0.934 25.502 26.693
0.10 0.924 26.208 27.478
0.15 0.902 27.469 28.903

0.20 0.884 28.415 29.915
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mean values of two calculations for ¥® equal to zero and =n/4, respectively. |K'8| is
normalized by |K"P| the value given by the J-integral prediction. It can be seen that the J-
integral prediction is accurate to within 5% provided the relative thickness of interlayer is
less than 0.05. The multi-layer estimate of " — ™ [evaluated from (30) and (24)] is listed
in the last column in Table 4, The good agreement with the finite element result for mode
mixity shift can be seen. It may also be observed that the agreement becomes better as the
relative interlayer thickness /R becomes small, justifying the present phase shift estimate.

In the literature on interfacial fracture, a frequently quoted definition of the near tip
mode is:

¥ = arg {(L)}, (34

where ¢ is the complex generalized traction defined previously. The angle i/ is termed local
mode mixity when the interfaces are treated as a mathematically sharp surface, e.g. Rice
(1988), Rice er al. (1990), Suo (1990), Wang et al. (1992). The local mode mixity angle in
(34) is defined relative to a length parameter £ which can be chosen arbitrarity. Within the
present model, this length parameter can be precisely fixed at:

L =dh~0.3h (35)

This provides an interpretation of @ tabulated in Table 2 as the dimensionless location
where the mode mixity can be assessed from the results provided by conventional bimaterial
analysis. If the near tip mode mixity i is previously determined by a length scale L other
than the one given by (35), the actual crack tip mode can be recovered using the following
translation law :

Y = —¢In (L/dh). (36)

We next examine the condition under which the crack tip will be open. The present
model predicts a truly open crack, free of any stress oscillation and Comninou type near
tip contact zone (Comninou, 1977), as long as [y/'?| evaluated by (30) is less than /2.
Thus, the crack will be genuinely open if the load angle y* falls within the range of
¥, = ¢® > ¢, —=n. The upper limit . for an open crack is:

L
Y, =mn/2—w,—arctan 22+2 In —, 37

and Y, —7/2—w, is almost symmetric with respect to the sign change of ¢. Alternatively,
an open crack is formed if:

exp [— (12— ~ 0] < Coes < exDI(R24+$ +@0)f], G9)

where the dimensionless coefficient ¢,pe = 7.389¢% ~ 2.2. The resemblance of this “open-
ness” condition with the nonoscillatory condition (9) is emphasized here and difference
between coi and ¢y is not substantial, say less than one order of magnitude. The concept
of a small scale contact zone introduced by Rice (1988) to circumvent the issue of inter-
penetration can be justified because no contact would ever exist if ¢, 2 ¢® =y, ~7.
Indeed the related problems of stress oscillation and near tip contact can be removed
simultaneously via the interlayer model under the common range of remote loading phase
angle restricted by (9) and (38). Consequently, nonoscillatory and open crack tip profile
will be realized for the range of realistic bimaterial descriptions if the present interlayer
model is adopted, and the corresponding remote loading phase range would have an angle
span slightly less than 180°, as suggested by Shih and Asaro (1989).
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The in-plane mixed mode fracture condition within the interlayer is now stated by an
intrinsic fracture curve I" phrased in terms of the crack tip phase angle "°:

g™ =TY™), (39

where I'(y'?) could be obtained by a micromechanical model of the interlayer. The " curve
defined in (39) represents intrinsic fracture resistance and its shape is unaffected by the
oscillation index ¢, as suggested by Hutchinson (1990). The values of ¢, as well as the
specimen geometry (through dimensionless length L/A), only contribute to the shifting of
this intrinsic curve via y'°.

Various experimentally determined interface fracture resistance curves can be reor-
ganized and compiled in a unified and unambiguous manner using formula (36). The
commonly observed U-shape curve of interface toughness vs mode mixity is preserved but
the toughness is a minimum near y'* = 0. For example, the experimentally measured
interface toughness curve reported by Liechti and Chai (1992) can be made approximately
symmetric by a phase shift of about 20-25°. For their glass/epoxy bimaterial and test
configuration, a phase shift of 25° would require an interface thickness of the order of 10
microns. A width of this order is resonable because the glass/epoxy interface is rather
diffused.

5. FRACTURE CHARACTERIZATION FOR A PARTIALLY “CLOSED” CRACK

We next discuss the case of a partially closed interlayer crack in which the major
portion of the crack length (R < —x, < L) is open but the crack tip is closed by the
skewness of the near tip field, as shown in Fig. 5(a). A mathematical description for this
situation is

Re[e™” K*h*] <0 but Re[K*L*]>0. (40)

The other cases involving totally closed interlayer cracks under the condition
Re[K*L*] < 0 are of less interest. A contact traction ¢, = 6,+int, would occur along
— R < x; <0, with real normal contact stress o, and friction stress t.. For simplicity,
attention is focused on the case of frictionless contact in which ¢, = o, = 0. The near tip
stress singularity field can be constructed by the superposition of a non-contact problem
with hypothetical material overlapping, see Fig. 5(b}, and a stress field solely generated by
the normal contact stress, i.e.

k"z Xz
® ®
materia! h
_~overlapping -
Sx 7
SRS ALY e - _ i
. interlayer X, o interlayer X,
Bl 7ay R
inner /7’ ¢ 4
h | expansion h =

® ®

{a) {b)

Fig. 5. Geometry of crack tip contact, (a) contact configuration, (b) hypothetical crack profile after
the release of contact stress.
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K™ = g e K*h* + K° = iK}p, (41)

where K17 is real and the near tip phase angle is fixed at +90°. A simple estimate for the
stress intensity factor K¢ induced by contact traction ¢, can be made by a suitable application
of the following formula of Suo (1990):

2 0 )
K~ ~\/;cosh néj (—x,)" " %g,(x,)dx,, (42)
—R

for bimaterial with oscillation index é. Equation (42) can be used for the present interlayer
model if the value of ¢ varies gradually from zero (when |x,| < /) to ¢ (when |x,| » h).

We next describe a scenario of crack tip contact. In the absence of contact traction,
the crack face opening displacement 6*(x,), for aligned orthotropic materials, should have
the following asymptotic form :

 —2x,/nH® Re [q e K*h*], if |x,| «h;
0*(x)) = (43)

N —2x,/n(H%/cosh ne) Re [K™ (—x)*/(1 4+ 2ig)], if |x;| > h,

as shown in Fig. 5(b). Note by condition (40), the last factors of the respective two
asymptotic expressions possess different signs. The sign switch of * occurs at a location
which could be represented fairly well by the first contact distance r, estimated from the
outer field, Rice (1988). The application of contact traction o, eliminates the material
overlapping shown in the shaded area of Fig. 5(b), and the contact zone size R would be a
finite fraction of r.. The case of R « 4 is termed here as the case of small scale interlayer
contact, and it should not be confused with the concept of small scale contact which requires
R to be small with respect to the radius of X* dominant annulus. In this case one can take
¢ = 0 and consequently the values of K¢ (now becomes real) and KIP are directly evaluated
from the remote K*:

K¢ = —Re[ge® K*K*], K =Im[qe” K*h"]. (44)

The case of large scale interlayer contact (referring R > h) is more involved. The well-
known Comninou solution (1977) (which introduces frictionless contact to eliminate mutual
penetration near the tip of an interface crack) would provide an accurate outer field for the
present interlayer fracture problem. The normal contact stress in the Comninou solution,
however, is unbounded near the crack tip, and then drops to a bounded normal stress
immediately behind the crack tip. This rather peculiar behavior can be eliminated by the
present interlayer model. The boundedness of o, in the context of small and intermediate
scale interlayer contact is demonstrated below. The same qualitative behavior would be
preserved in the case of large scale interlayer contact.

We first phrase the nonoverlapping condition along the contact region as:

—-;‘ Vx €(—R,0), (45)

where the left hand side represents the x-derivative of interlayer crack opening displacement
for orthotropic materials, derivable from the result reported by Suo (1990). If the function
&* is known, we can appeal to the following singular integral equation of Cauchy type for
the contact stress o,
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1 [ 1+t Ke
E j—l t—x G-"(t) dr= mf(x)& Xy = - R(1+X)/2, (46)
where
f) =80 +2(1+ 08 (x), 5*(x) = —~K°HB —12:"1 500). 7

Therefore f(x) is a bounded positive function and decreases monotonically from
f(=1) = 1, according to eqn (43) and the situation presented in Fig. 5(b). Consider y(x) =

1+ xa.(x) as the unknown function to be resolved under the prescription of f(x). Equa-
tion (46) then stands for a canonical Cauchy integral equation for y(x). For the present
“soft contact” situation (Erdogan, 1978), the solution of y(x) should be bounded at both
ends of x = + 1. That requirement would be sufficient to give the following expression for
O

. = Ke Jl-—xf‘ f(dt . (48)
/R T - /1-P

The normal contact stress estimated by the interlayer fracture model has the appealing
feature of being finite at the crack tip and diminishing at the contact edge, as conjectured
in Fig. 5(b). Moreover, the strength of contact stress is measured by K"[\/ﬁ where K° is
given by (44). In contrast, the Comninou model of interface fracture (1977) predicts singular
contact normal stresses with amplitude related to the local Kj; by a ratio of B, the second
of Dundur’s parameter.

A fracture criterion for partially closed interlayer crack could be phrased in terms of
a critical near tip shear stress intensity factor, K, which is defined in (41) and resolved
explicitly in (44) for the case of small scale interlayer contact. Alternatively, failure could
also be induced by the coalescence of microcracks within the interlayer onto the main crack.
The microcracks are initiated at some distance ahead of the main crack where the tensile
hoop stress g,, is high, as schematically shown in Fig. 5(a). The competition between
near tip shearing versus remote tensile cracking provides the mechanism dominating the
interlayer fracture.

6. DISLOCATION EMISSION FROM AN INTERLAYER CRACK TIP

The plasticity aspects of interface cracks have been reviewed by Shih (1991). He has
observed that the domain of validity of a separable asymptotic solution, if one exists, of a
stationary interface crack is smaller than length scales of physical relevance. Through full-
field calculations for a Griffith crack lying at the interface between an elastic-plastic material
and a rigid substrate, Sharma and Aravas (1992) have shown that the region dominated by
the separable asymptotic solutions obtained by Wang (1990) and Champion and Atkinson
(1991) is very small indeed. Thus it does not appear that a continuum plasticity treatment
can provide the relevant results to extend the present interlayer fracture framework. More-
over, the validity of continuum plasticity theory is questionable at length scales pertinent
to interlayer thickness. Therefore, we explore an alternative approach based on discrete
dislocations to study ductile/brittle interlayer fracture behavior.

To gain some understanding of interlayer ductile fracture we analyze the geometry
shown in Fig. 6. This treatment is as an extension of Rice-Thomson model (1974) for
homogeneous materials. We investigate the competition between dislocation emission (with
consequential crack tip blunting) and interlayer cleavage by considering the onset of dis-
locations originally situated at (p, ¢), where p is the feasible distance for dislocation
nucleation and ¢ the angle between glide plane and interface. Direct evidence confirming
this geometry has been recently reported by Zhang and Thomson (1990). Their micrographs
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Fig. 6. Dislocation emission from a crack tip advancing in an interlayer, described by Rice-Thomson
dislocation emission mechanism.

showed arrays of dislocations, of similar orientations, were emitted at regular intervals

from the tip of an advancing interface crack.
By analysis parallel to that which was given by Rice and Thomson (1974), a one-to-

one correspondence between the dislocation emission angle ¢ and the near tip mode mixity
¥'? is obtained :

2 cos p—tan(¢/2)sin ¢ _ i
tan ($/2)(Bcos §— D465 2V 49

by neglecting the ledge force term. The dislocation emission angle versus near tip mode
mixity is shown by the solid curve in Fig. 7. ¢ decreases monotonically as y"? increases and
¢ changes rapidly near ¢ = 0.

The condition for dislocation emission can be stated in the following form:

2

P = BIRy < po, (50)

where p, represents the feasible nucleation site of dislocation and has a value larger than r,
(the dislocation core cutoff radius) if energy fluctuation and three dimensional effect are
taken into account. j in (50) corresponds to the case of purely mode I near tip field :

3,0
254 e
2.0

1.5

1.0 e 4

¢ (radians), R,

05 e R.

0.0 —T T T T T
-90.0 -60.0 -30.0 0.0 30.0 80.0 900

YyHe (degrees)

Fig. 7. Effect of crack tip mode mixity on dislocation emission parameters. Solid and dashed curves
correspond to emission angle ¢ and driving intensity R,,, respectively.
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Etrp? (l —v sin? 6)2
16nyR3 \  cos 6

p= , (5D

where R, = 0.7698 denotes the maximum value of sin ¢ cos (¢/2), b refers to the magnitude
of the Burgers vector, 8 is the angle between the Burgers vector and the dislocation line,
and 7 signifies the true/actual surface energy along the interlayer. The numerical factor R,
in (50) characterizes the enhancement of dislocation driving force by near tip mode mixity.
It is given by :

R,, = cos (¢/2)[sin ¢ cos y'? 4 (3 cos ¢ — 1) sin Y'*}/R, (52)

with ¢ determined by (49). The relation between R,, and ¥'? indicated by the dashed curve
in Fig. 7 shows the influence of crack tip mode mixity on the dislocation driving intensity.
The minimum value of R,, is obtained under pure mode I near tip field and R,, reaches its
maximum when the near tip field is purely mode II. Consequently, dislocation emission is
assisted by the mixed mode conditions induced by the skewness of the interlayer fracture.

7. CONCLUDING REMARKS

Clarifications of several intriguing issues in interfacial fracture are achieved via a
physically motivated interlayer model. The mathematical structure for the interlayer model
is easily identified by an application of the J integral. Only the phase shift angle, which
is essential in formulating concepts of near tip skewness and near tip contact, remains to
be worked out. For aligned orthotropic materials, explicit results for the phase shift have
been obtained for a class of material transition function. The framework which incorporates
a length dimension of an interlayer provides precise definitions of local mode mixity, “open
crack” and intrinsic fracture toughness curve, and unifies several concepts and aspects of
interfacial fracture. Within this framework, stress oscillation and singularity in contact
stresses (caused by a mathematically sharp interface) are not issues at all.

The interlayer model developed here can be extended into the case of dynamic crack
growth. This problem has been recently examined by Yang er al. (1991) who showed that
the oscillation index ¢ becomes exceedingly large when crack speed approaches the lower
Rayleigh wave speed. These results pertaining to a mathematically sharp interface can be
reinterpreted in the light of interlayer fracture concepts.
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